

What predicts (good) outcomes in young boys with fragile X syndrome?

Gaia Scerif

Attention, Brain and Cognitive Development Department of Experimental Psychology University of Oxford

> Liege - X fragile - Europe 16.11.2012

Clinical and Cognitive Phenotype

33-67% fulfill ASD diagnosis

(Rogers et al., 2001; Hernandez et al., 2009)

(Hagerman, 1987; Turk, 1998)

Behaviour and Cognition:

Face Recognition, Long-term memory, Receptive Language MA

Social cognition, Working Memory, Attention&control

2

Clinical and Cognitive Phenotype

Physical characteristics:

Highly debated, complex clinical presentation:

- "ADHD" or "ADHD-like"?
- "ASD" or "autistic features"?

Here:

What insights can be gained from studying variable outcomes?

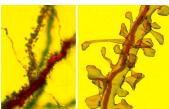
~ 70% fulfill ADHD diagnosis (Hagerman, 1987; Turk, 1998)

33-67% fulfill ASD diagnosis

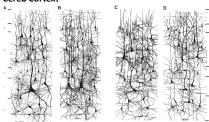
(Rogers et al., 2001; Hernandez et al., 2009)

3

Genetics and Cellular Neuroscience


glutamatergic systems (mGluR), and its silencing has Meffects on glutamate / GABA balance

A puzzle: How do uneven cognitive profiles and clinical strengths / weaknesses originate?


> (e.g., D'Hulst & Kooy, 2007, TiNS, Bear et al., 2004, TiNS)

Bridging Cell & System Neuroscience

FXS affects dendritic morphology [Nimchinsky et al 2002, Ann Rev Physiology]

Fronto-Parietal Neurones: "All the more spiny to think with" [Elston, 2003

- 1. Long-range integration
- 2. Recurrent connections [Miller & Cohen, 2001, Ann Rev Neuroscience]
- Neurotransmitter modulation at asymmetric synapses [Gao & Goldman-Rakic, 2003, PNAS]

All rely on mature dendritic spine morphology

Bridging Cell & System Neuroscience

1. Atypical dendritic spine morphology and thus long range integration [e.g.,

Nimchinsky et al 2002, Ann Rev Physiology

2. Atypical regulation of extrinsic (e.g., monoaminergic) neurotransmitter systems [e.g., Zhang et al., 2005, Mol Cell Proteomics,

Bassell et al., 2009, Neuron]

FMRP highly relevant to cortical and subcortical networks involved in attentional control?

e.g., Scerif and Karmiloff-Smith, 2005 TiCS; Scerif et al., 2005, J of Cog Neuro

"Fragile" Attention Development

Adults

Executive difficulties [e.g., Cornish et al., 2001, J Cog Neuro]

Adolescents & school children

Poor response inhibition and sustained attention [Sullivan et al., 2007, Am J of Med Gen]

Executive difficulties [e.g., Munir et al., 2000, Neuropsychologia; Hooper

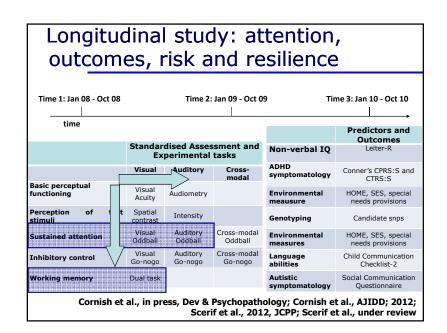
et al., 2008, Neuropsychology]

Preschoolers & infants

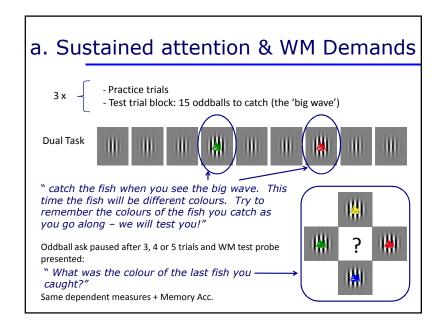
Poor response inhibition [Scerif et al., 2004, Dev Science; Scerif et al., 2007, Neuropsychologia]

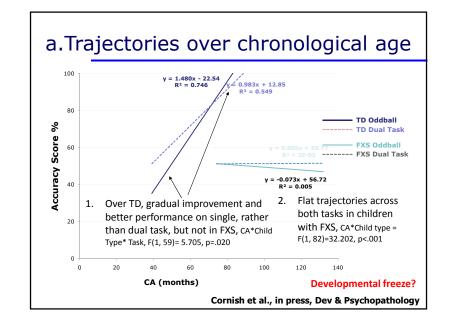
Poor control of eye-movements [Scerif et al., 2005, J Cog Neuro]

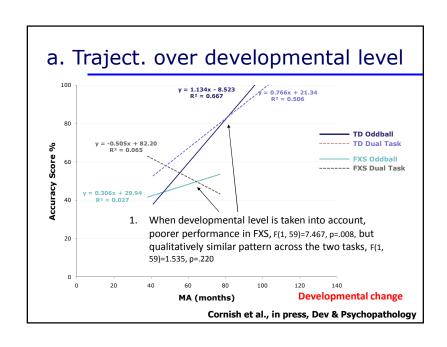
Longitudinal study: attention, outcomes, risk and resilience

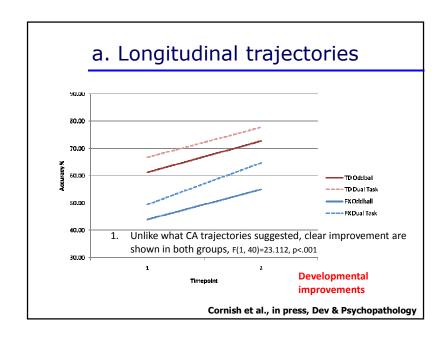

* 59 boys with FXS, aged 3-10yrs at Time 1

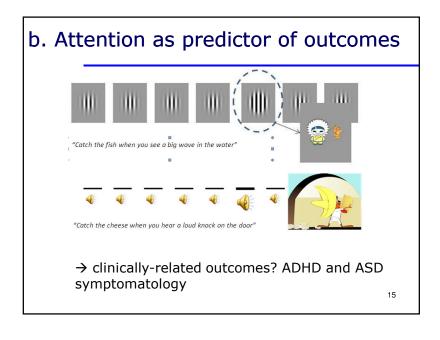
- Recruited through the Fragile X Society UK
- Current analyses following exclusion for ADHD medication
- 129 typically developing (TD) boys, aged 3-10yrs
 - Recruited from local schools

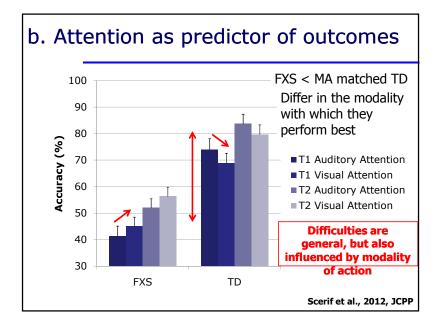

<65 >65


- Exclusion of elevated Conner's sco


ores							
		Fragile X syndrome groundnnette					
		Mean	SD k	Min Max Carmiloff-Smith			
%	Age at Test (yrs)	7.5	2.2	3			
	Non-verbal IQ Equivalent	63	15.06	40			
	Mental Age Equivalent (yrs)	4.7	.87	2.8			
	Conner's ADHD Index	65.6	7.9	48 Kim Cornish			
	Conner's T Hyperactivity	63.7	9.2	47 77			
	Social Comm Questionnaire	19.7	7	5 33			
				· · · · · · · · · · · · · · · · · · ·			





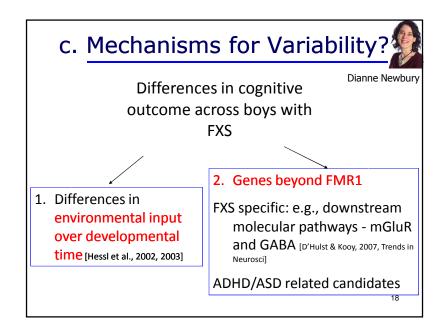


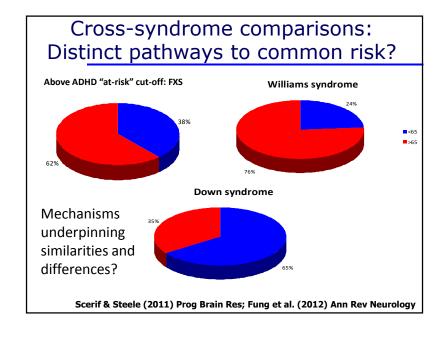
b. Differential longitudinal predictors of ADHD and ASD symptoms in FXS

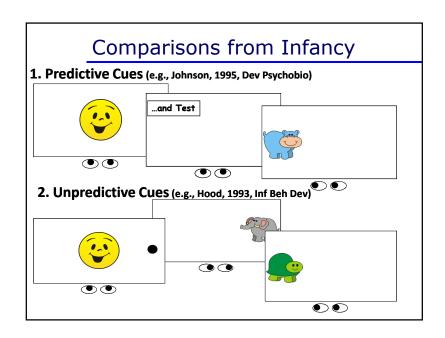
	T1 Aud	T1 Visual	
T2 IQ	.051	.241	
T2 Conner's	034	058	
Oppositional			
T2 Conner's	258	010	
Cognitive /			٠
Inatt			
T2 Conner's	256	382*	
Hyperactive		13.9%*	
			٦
T2 Conner's	266	498**	(
ADHD Index		19%**	ç
			`

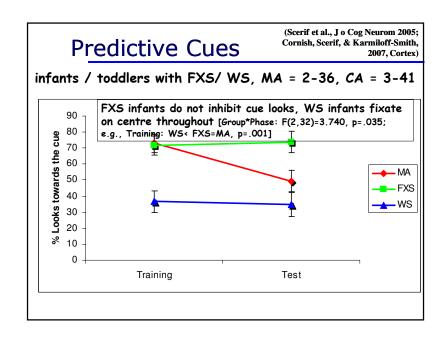
FXS < MA matched TD Differ in modality with which they perform best

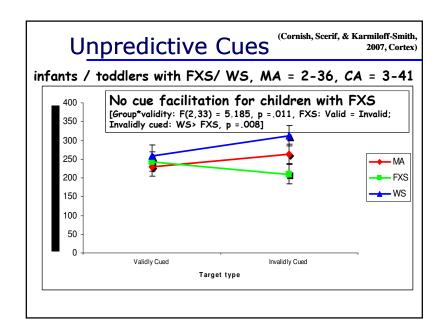
Reversal for predictors of later autistic spectrum symptoms:

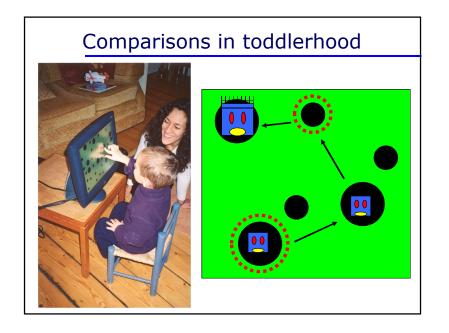

T1 Aud (false alarms) correlates with T2 SCQ scores (.422, 17%)


Attentional control relates to later ADHD/ASD and in ways that depend on modality

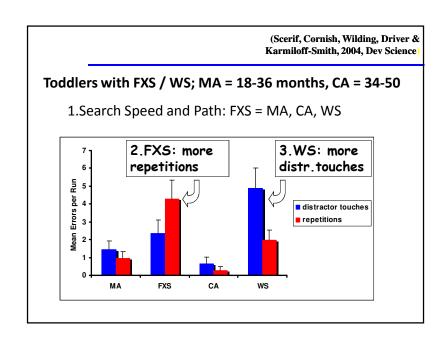

Scerif et al., 2012, JCPP; Cornish et al., 2012; AJIDD

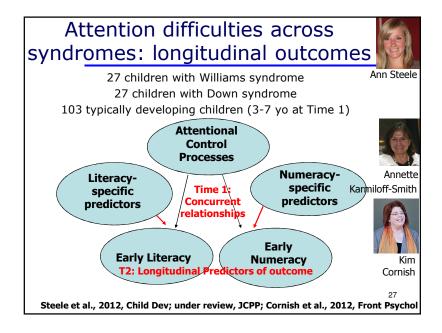

2. Common risk and unique pathways to outcomes

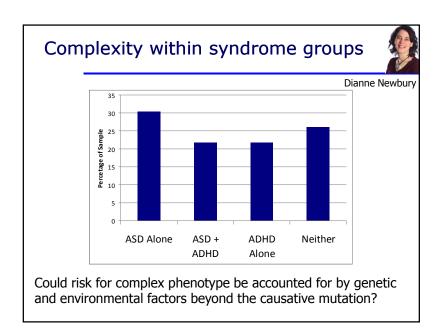

19

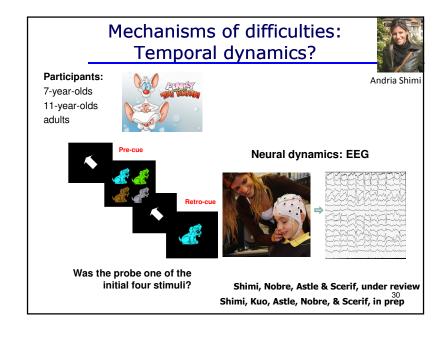


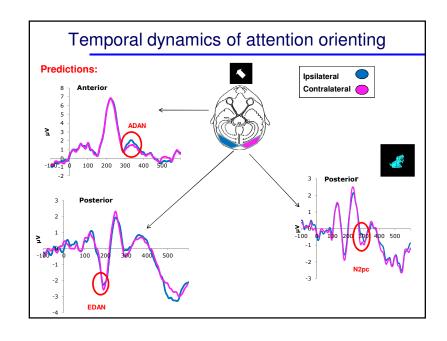


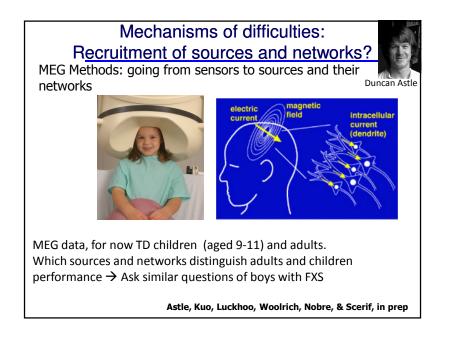












3. Neurocognitive risk mechanisms within syndrome

Taking Stock & Discussion Points

33

Predicting and understanding good outcomes at multiple levels

- 1. Exploring individual differences over time is key at all levels
- 2. Developmental trajectories to be tested empirically:
 - * Longitudinal designs open the road to studying predictors of good outcomes: Mechanisms?
 - * Comparisons with children with different syndromes may provide insights into common and unique mechanisms
- 3. Mechanisms of variability:
 - * Within-group differences provide insights into environmental and genetic predictors
 - * Neural underpinnings of differences?

Many thanks to

ALL CHILDREN AND FAMILIES WHO PARTICIPATED...

35

